Algorithm 777: HOMPACKO90: A Suite of
Fortran 90 Codes for Globally Convergent
Homotopy Algorithms

LAYNE T. WATSON and MARIA SOSONKINA
Virginia Polytechnic Institute and State University
ROBERT C. MELVILLE

Lucent Technologies

ALEXANDER P. MORGAN

General Motors Research and Development Center
and

HOMER F. WALKER

Utah State University

HOMPACK9O0 is a Fortran 90 version of the Fortran 77 package HOMPACK (Algorithm 652),
a collection of codes for finding zeros or fixed points of nonlinear systems using globally
convergent probability-one homotopy algorithms. Three qualitatively different algorithms—
ordinary differential equation based, normal flow, quasi-Newton augmented Jacobian ma-
trix—are provided for tracking homotopy zero curves, as well as separate routines for dense
and sparse Jacobian matrices. A high level driver for the special case of polynomial systems is
also provided. Changes to HOMPACK include numerous minor improvements, simpler and
more elegant interfaces, use of modules, new end games, support for several sparse matrix
data structures, and new iterative algorithms for large sparse Jacobian matrices.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica-
tions—Fortran 90; G.1.5 [Numerical Analysis]: Roots of Nonlinear Equations—systems of
equations; G.4 [Mathematics of Computing]: Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Chow-Yorke algorithm, curve tracking, fixed point,

This work was supported in part by Air Force Office of Scientific Research grant F49620-92-
J-0236, Department of Energy grants DE-FG05-88ER25068/A004 and DE-FG03-94ER25221,
National Science Foundation grant DMS-9400217, and National Aeronautics and Space
Administration grant NAG-1-1562.

Authors’ addresses: L. T. Watson and M. Sosonkina, Department of Computer Science,
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0106; R. C.
Melville, Lucent Technologies, 600 Mountain Avenue, Murray Hill, NJ 07974-2070; A. P.
Morgan, Manufacturing and Design Systems Department, General Motors Research and
Development Center, MC 480-106-285, 30500 Mound Road, Warren, MI 48090-9055; H. F.
Walker, Department of Mathematics and Statistics, Utah State University, Logan, UT 84322.
Permission to make digital/hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

© 1997 ACM 0098-3500/97/1200-0514 $5.00

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997, Pages 514-549.

Algorithm 777: HOMPACK90 . 515

globally convergent, homotopy methods, polynomial systems, probability-one, zero

1. INTRODUCTION

Two decades ago an introduction to a paper on homotopy methods would
have had to justify why homotopy methods were being considered at all,
offer apologies for the inefficiency of homotopy methods relative to locally
convergent methods such as quasi-Newton, and carefully circumscribe the
potential applicability and advantages of homotopy algorithms. Now, after
hundreds of significant applications ranging from aircraft design to statis-
tical parameter estimation, reasonable theoretical development, and sev-
eral notable attempts at algorithm and code development, such prefatory
remarks seem unnecessary. In some application areas—analog circuit
simulation, linkage mechanism design, geometric (CAD/CAM) modeling,
H?/H” controller analysis and synthesis—homotopy methods are now the
method of choice. In mechanism design, for instance, where all solutions
must be found, there is no other viable alternative to homotopy methods.
Surveys of homotopy methods and applications are by Watson [1986; 1990]
and most recently the book by Allgower and Georg [1990], which contains
an extraordinary collection of references on both simplicial and continuous
homotopies. The distinction between continuation, homotopy, and probabil-
ity-one homotopy methods is frequently blurred in the literature, but there
are fundamental differences, which are detailed by Ge et al. [1996b]. The
efficiency issue is now moot, since good implementations of probability-one
homotopy algorithms are competitive with quasi-Newton methods in raw
CPU time, and the growing emphasis on software engineering and produc-
tivity argues that the human time lost in finding good starting points and
nursing locally convergent methods to physically meaningful solutions is
far more valuable than the extra CPU cycles a globally convergent homo-
topy algorithm might take. Serious computer code development has oc-
curred, some examples being CONSOL [Morgan 1987], CONKUB [Mejia
1986], PITCON [Rheinboldt and Burkardt 1983], FIXPT [Watson and
Fenner 1980], and HOMPACK [Watson et al. 1987].

The basic theory of globally convergent probability-one homotopy algo-
rithms will be summarized here for future reference, drawing from the
results of Chow et al. [1978] and Watson [1979a; 1979b; 1979c¢; 1980a;
1986]. The theoretical foundation of all probability-one globally convergent
homotopy methods is given by the following definition and theorem from
differential geometry.

Definition 1.1. Let U C R™ and V C R” be open sets, and let p : U X
[0,1) X V — R” be a C? map. p is said to be transversal to zero if the
Jacobian matrix Dp has full rank on p~1(0).

THEOREM 1.2 (TRANSVERSALITY). If p(a, A, x) is transversal to zero, then
for almost all a € U the map

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

516 . L. T. Watson et al.

pu(A, x) = pla, A, x)

is also transversal to zero, i.e., with probability one the Jacobian matrix
Dp.(A, x) has full rank on p,'(0).

To solve the nonlinear system of equations

flx) = 0,

where f: R> — R? is a C? map, the general probability-one homotopy
paradigm is to construct a C? homotopy map p: U X [0,1) X R» —> R?
such that

(1 p(a, A, x) is transversal to zero,
and for each fixed a € U,

(2) p,(0, x) = p(a, 0, x) = 0 is trivial to solve and has a unique solution
X0,

(3) p.(1, x) = f(x), and
(4) the connected component of p,'(0) containing (0, x,) is bounded.

Then (from the Transversality Theorem (1.2)) for almost all @ € U there
exists a zero curve vy of p,, along which the Jacobian matrix Dp, has rank
p, emanating from (0, x,) and reaching a zero X of f at A = 1. This zero
curve vy has no bifurcations (i.e., y is a smooth 1-manifold) and has finite
arc length in every compact subset of [0,1) X R”. Furthermore, if Df(X) is
nonsingular, then vy has finite arc length. The complete homotopy paradigm
is now apparent: construct the homotopy map p, and then track its zero
curve y from the known point (0, x,) to a solution X at A = 1. p, is called a
probability-one homotopy because the conclusions hold almost surely with
respect to a, i.e., with probability one. Since the vector a and indirectly the
starting point x, are essentially arbitrary, an algorithm to follow the zero
curve y emanating from (0, x,) until a zero X of f(x) is reached (at A = 1)
is legitimately called globally convergent. Note that this is much stronger
than the “global convergence” claimed for trust region quasi-Newton meth-
ods, where the guaranteed convergence is to a stationary point of some
merit function, which is not even necessarily a zero of f. Local methods
require assumptions such as convexity or monotonicity to ensure that the
stationary point is indeed a zero of f; the global convergence of homotopy
methods to a true zero holds under far weaker assumptions. Essentially,
the local behavior of f is irrelevant—only the behavior of f and p, “in the
large” matters. One final observation is that A need not increase monoton-
ically along <y, a feature which distinguishes homotopy from classical

continuation methods (this is illustrated by the circuit problem in Section
10).

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 517

A different version of the above result, for the special case where the
homotopy map p, is a simple convex combination, is [Watson 1986]

THEOREM 1.3. Let F : R? — R? be a C? map such that for some r > 0
and ¥ > 0, F(x) and x — a do not point in opposite directions for ||x|| = r,
la|| < 7. Then F has a zero in {x € R? | ||x|| = r}, and for almost all a ¢
R?, |a| < 7, there is a zero curve vy of

pa(A, x) = AF(x) + (1 — M)(x — a),

along which the Jacobian matrix Dp,(\, x) has full rank, emanating from
(0, a) and reaching a zero x of F at A = 1. Furthermore, y has finite arc
length if DF(x) is nonsingular.

The conditions in the above existence theorems are difficult to verify for
practical problems, but less general special cases (e.g., |x| = r = x'F(x)
= 0 for some sufficiently large r) can often be verified in practice. Further-
more, sometimes watching the behavior of divergent homotopy zero curves
can suggest a homotopy map that will lead to convergence.

HOMPACK90 retains the same three basic curve tracking algorithms of
HOMPACK: ordinary differential equation based, normal flow, and quasi-
Newton augmented Jacobian matrix. The normal flow algorithm is usually
the most efficient, but there are situations where one of the other methods
is preferable. A simple, easy-to-use driver is provided for the special case
when F(x) is a polynomial system. This driver makes no attempt to find
common subexpressions (e.g., if x3 occurs in several components of F(x) it
is reevaluated each time) and tracks the total degree number of paths,
ignoring any structure in F(x). This is well behind the current state of the
art in polynomial systems [Morgan et al. 1995; Verschelde and Cools 1993;
Verschelde et al. 1994], but developing production quality code that ex-
ploits polynomial system structure is a formidable task. The code in
HOMPACK?9O0 is, however, perfectly adequate for small polynomial systems
(with total degree less than 10, say). Since the curve tracking algorithms
are described in detail by Watson et al. [1987], this article will concentrate
on the changes and additions to the algorithms in HOMPACK [Watson et
al. 1987].

2. ORDINARY DIFFERENTIAL EQUATION-BASED ALGORITHM (DENSE
JACOBIAN MATRIX)

Depending on the problem, the homotopy map p,(A, x) may be given by
Pa(X, x) = Ax — flx)) + (1 = Mx — a) (1a)
for the Brouwer fixed point problem

x = flx), f:B—B, (1b)

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

518 . L. T. Watson et al.
where B C R? is the closed unit ball, or by
pa(A, x) = AF(x) + (1 = M)(x — a) (2a)
or
P(A, x) = AF(x) + (1 =)G(x; a) (2b)
for the zero finding problem
Fx)=0, F:R” - R?, (2¢)

where G(x;a) = 0 is a “simple” version of F(x) = 0. For example, in a
fluids problem, G might be identical to F' except with the Reynolds number
R = 0, or in a circuit problem, G might correspond to F' with the current
gain of all the transistors set to zero; or in a structural mechanics problem,
G might correspond to F' with very stiff elements. Often the most effective
homotopy maps p, are nonlinear in A, e.g., where A parametrizes the
geometry in a fluids problem, or where A = 0 represents a simple transis-
tor model, or where A = 0 corresponds to simple material constitutive
relations. The role of the parameter vector a in the homotopy maps above is
crucial, not just for the probability-one theory, but also in practice. Think of
the random a as providing “symmetry breaking,” which also has desirable
numerical consequences. Note that the dimension m of a need not equal p,
and indeed it may be advantageous to have m > p.

The details for the fixed point, zero finding, and general homotopy map
cases are similar, so for the sake of brevity, only the zero finding problem

(2c) with homotopy map (2a) will be presented. Assuming that F(x) is C?, a
is such that the Jacobian matrix Dp,(A, x) has full rank along vy, and v is
bounded, the zero curve vy is C' and can be parametrized by arc length s.
Thus we have A = A(s) and x = x(s) along vy, and

pa(A(s), x(s)) = 0 (3)
identically in s. Therefore
dA
d ~ ds |
gpa(A(S), 2(s)) = Dpa(Ms), x()| o | =0, (4)
ds

and

d\ dx
%) -
ds’ ds

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 519
With the initial conditions
A0) =0, x(0) = a, (6)

the zero curve v is the trajectory of the initial value problem (4)-(6). When
A(8) = 1, the corresponding x(s) is a zero of F'(x). Thus, all the sophisti-
cated ordinary differential equation techniques currently available can be
brought to bear on the problem of tracking y [Shampine and Gordon 1975;
Watson 1979a]. Note that (4) only implicitly defines the derivative, but
Watson et al. [1987] describes robust numerical linear algebra procedures
to deal with this. Another subtlety is that solving (4)—(6) does not explicitly
enforce (3), and no matter how good the ODE solver is, the computed
solution will drift away from vy. This is not really a problem, though, since a
computed point (A, %) lies on some curve in the Davidenko flow [Allgower
and Georg 1990], corresponding to initial point @ (which can be computed
from (A, £)). Thus p,(A, £) = 0 exactly, and the trajectory of p; = 0 is
followed starting from (A, #). There is a bundle of curves around vy all
leading to the same solution point (1, x), and it is only necessary to stay in
this bundle [Watson 1979a]. This self-correcting property of homotopy
algorithms makes them inherently stable.

Once the hyperplane A = 1 is crossed, the point (1, X) on vy is computed
by interpolation from the ODE solver’s mesh points and a secant method
root finding iteration (precisely, subroutines INTRP and ROOT from
Shampine and Gordon [1975]). The ODE codes from Shampine and Gordon
[1975] used in HOMPACK are well established and reliable, so changes
were confined to replacing arithmetic IF statements, converting labeled
nonblock to nonlabeled block DO loops, and improving portability by
inserting a USE statement to access the KIND parameter for real variables
and using it in declarations and in real constants.

3. NORMAL FLOW ALGORITHM (DENSE JACOBIAN MATRIX)

As the homotopy parameter vector a varies, the corresponding homotopy
zero curve 7y also varies. This family of zero curves, alluded to in the
previous section, is known as the Davidenko flow [Allgower and Georg
1990]. The normal flow algorithm is so called because the iterates converge
to the zero curve y along the flow normal to the Davidenko flow (in an
asymptotic sense). The normal flow iteration is essentially Newton’s
method with a rectangular p X (p + 1) Jacobian matrix, although the
rectangular matrix introduces some complications that must be handled
with care (see Watson [1986] and Watson et al. [1987]). As before, only the
zero finding case need be described—(2a) and (2¢) are the relevant equa-
tions here.

The normal flow algorithm has four phases: prediction, correction, step
size estimation, and computation of the solution at A = 1 (called the “end
game”). For the prediction phase, assume that several points PV =(A(s;),

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

520 . L. T. Watson et al.

x(s1)), P® = (A(sy), x(s3)) on 7y with corresponding tangent vectors
(dA/ds(sq), dx/ds(s1)), (dA/ds(ss), dx/ds(ss)) have been found, and that
h is an estimate of the optimal step (in arc length) to take along y. The
prediction of the next point on vy is

Z9 = p(sy + h), (7)

where p(s) is the Hermite cubic interpolating (A(s), x(s)) at s; and s,.
Precisely,

p(s1) = (A(s1), x(s1)), p'(s1) = (dMds(sy), dx/ds(sy)),
p(s2) = (A(s2), x(s3)), p'(ss) = (dMds(ss), dx/ds(s,)),

and each component of p(s) is a polynomial in s of degree less than or equal
to 3.

Starting at the predicted point Z'”, the corrector iteration mathemati-
cally is

200 = 2% — [Dp,@")pZ"), k= 0,1, ..., (8)

where [Dp,(Z™)]" is the Moore-Penrose pseudoinverse of the p X (p +1)
Jacobian matrix Dp,. Computationally the corrector step AZ = Z**+1—
Z™ is the unique minimum norm solution of the equation

[Dp,JAZ = —p,. (9)

Small perturbations of a produce small changes in the trajectory <.
Geometrically, the iterates given by (8) return to the zero curve y along the
flow normal to the Davidenko flow (the family of trajectories y for varying
a), hence the name “normal flow algorithm” (cf. Figure 1). Robust and
accurate numerical linear algebra procedures for solving (9) and for com-
puting the kernel of [Dp,] (required for (7)) are described in detail by
Watson et al. [1987].

When the iteration (8) converges, the final iterate Z**Y is accepted as
the next point on vy, and the tangent vector to the integral curve through
Z™ is used for the tangent—this saves a Jacobian matrix evaluation and
factorization at Z**Y, The next phase, step size estimation, attempts to
balance progress along y with the effort expended on the iteration (8) and
is a sophisticated blend of mathematics, computational experience, and
mathematical software principles. Qualitatively, three different measures
of “progress” toward Z* = lim, _Z™ are employed, and the optimal step
size is computed by comparing the actual values of the measures with their
ideal values. These ideal values are input arguments (see array SSPAR) to
the user-called subroutines, and their default values are the result of

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACKS90 . 521

Fig. 1. Davidenko flow, normal flow iterates ®, and augmented Jacobian matrix iterates O .

considerable computational experience with practical problems. This pre-
dicted optimal step size for the next step is adjusted to prevent chattering,
and to reflect the convergence history and achievable machine precision.
This phase is identical to that in HOMPACK [Watson et al. 1987].

The “end game” phase to compute the solution (1, X) in the hyperplane
A = 1, which occurs when vy is tracked past A = 1, is different from that in
HOMPACK and is described in detail here. The end game of the algorithm
starts from two points P*) and P® such that P\’ < 1 and P® = 1. Thus,
initially, the solution at A = 1 lies somewhere between the previous point
PY and P?, ie., PY and P® bracket the solution. When the end game is
first entered, P’ and P'® bracket A = 1, and the first predicted point Z*
is computed as in the original normal flow algorithm in HOMPACK: using
the Hermite cubic interpolation and root finding. In each subsequent step,
the prediction Z*~? is generated by the secant method, namely,

— ptk)

Zk=2) = ph) 4 (ph-1) _ P(k))&_
(P — PP

This equation results in a disastrous prediction when [P}#V — P®| < |1

— P¥I, and can simply generate divergent approximations. To stabilize

the iteration, the last point P°??) on the opposite side of the hyperplane A

= 1 from P must always be saved to bracket the solution.
In the case when |[|[Z*~2 — P®)|| > |[P® — P©rP)|| the chord method

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

522 . L. T. Watson et al.

— p&)
Zk=2) = p®) 4 (plorr) — P(k))—(l Py
(P — PY)
is substituted for the secant method. Since the chord method has a slower
rate of convergence, its application is limited to this special case.
The correction is implemented as a single Newton step

k+1) — rz(k—2)
PRtD — 7k=2) 4 A7l),
where AZ"*~2? is the minimum norm solution to

[Dpu(Z*2)]AZ*? = —p,(Z*),

P©rp) g updated appropriately. This two-step process (linear interpolation
followed by a Newton correction) is repeated until the solution at A = 1 is
found or a limit on the number of iterations is exceeded. This limit in
HOMPACK was either taken as a constant or as

limit := 2(O-logy(ansae + ansre||P?|) O+ 1),

where ansae and ansre are absolute and relative error tolerances for the
solution x, respectively, supplied by the user. Depending on the problem
scale, limit can be negative, so HOMPACK90 takes this limit as

limit := 2(Olog,o(ansae + ansre)ld+ 1).

There are numerous plausible alternatives to the end game just de-
scribed: iterated Hermite cubic interpolation using bracketing points (the
scheme in the HOMPACK normal flow algorithm), several Newton correc-
tions instead of one per interpolation, projecting each Newton iterate along
the tangent direction onto the hyperplane A = 1, projecting the Newton
iterate orthogonally onto A = 1, and simply scaling the Newton iterate to
lie in A = 1. All of these and other schemes have been tried, but the
scheme described above is the best overall [Sosonkina et al. 1996].

The normal flow algorithm for dense Jacobian matrices in HOMPACK90
is identical to that in HOMPACK, except for the end game and a few other
minor improvements like the iteration limit mentioned above. This new end
game is essentially the same as the end game used for the augmented
Jacobian matrix algorithm in HOMPACK. Pseudocode is given for all the
algorithms, including the end games, by Watson et al. [1987], and so need
not be repeated here, since the modifications are obvious. All of the normal
flow subroutines were rewritten in Fortran 90, and some LINPACK [Don-
garra et al. 1979] subroutines were replaced by LAPACK [Anderson et al.
1995] routines. The changes include extensive use of array sections and
intrinsics, named block DO and CASE constructs, optional arguments,
interface blocks, automatic and assumed-shape arrays, and modules, re-

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 523

sulting in code that is more elegant, easier to read, and has much simpler
user interfaces.

4. AUGMENTED (DENSE) JACOBIAN MATRIX ALGORITHM

The quasi-Newton augmented Jacobian matrix algorithm is inspired by
Rheinboldt and Burkardt [1983], but differs in several important respects:

(1) a Hermite cubic rather than a linear predictor is used,

(2) a tangent vector rather than a standard basis vector is used to augment
the Jacobian matrix of the homotopy map,

(38) updated QR factorizations and quasi-Newton updates are used rather
than Newton’s method,

(4) different step size control, necessitated by the use of quasi-Newton
iterations, is used, and

(5) a different scheme for locating the target point at A = 1 is used, which
allows the Jacobian matrix of F' to be singular at the solution X,
provided rank Dp,(1, X) = p.

Like the normal flow algorithm, the quasi-Newton augmented Jacobian
matrix algorithm has four distinct phases: prediction, correction, step size
estimation, and computation of the solution at A = 1. Again, only the zero
finding case is described here. The goal is to minimize the number of
Jacobian matrix evaluations, and to use (rather complicated) step size
control and quasi-Newton updates to achieve that goal. This scheme, when
properly tuned, can be spectacularly efficient (in terms of number of
Jacobian matrix evaluations) compared to the normal flow and ODE-based
algorithms. However, it can also be erratic, and is not as robust without
fine tuning as the other two algorithms [Billups 1985]. This quasi-Newton
augmented Jacobian matrix algorithm is best reserved for situations where
Jacobian matrix evaluation is at a premium, and some fine tuning of
tracking parameters is acceptable.

The prediction phase is exactly the same as in the normal flow algorithm.
Starting with the points P = (A(s;), x(s1)), P® = (A(sy), x(s3)) on 7y
with corresponding tangent vectors

d)\() d)\()
—\S1 —Sq
T — ZS ,T® = ZS :
x X
%(31) g(sz)

the prediction Z'” of the next point on v is given by (7). It is assumed that
PY and P® are close enough together so that the inner product 7V - T'®
> 0.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

524 . L. T. Watson et al.

Starting with the predicted point Z¥, the correction is performed by a
quasi-Newton iteration defined by

A® -1 7k
Zk+1) — 7k _ [T@)t] (p“(o)), k=01, ..., (10)

where A® is a quasi-Newton approximation to the Jacobian matrix
Dp,(Z™). The last row of the matrix in (10) insures that the iterates lie in
a hyperplane perpendicular to the tangent vector 7? (cf. Figure 1). It is the
augmentation of the Jacobian matrix with this additional row which
motivates the name “augmented Jacobian matrix algorithm.” Details for
solving (10) and updating the augmented Jacobian matrix approximation
are provided by Watson et al. [1987], and such quasi-Newton updates are
analyzed by Walker and Watson [1990].

The step size estimation algorithm, an adaptation of that by Rheinboldt
and Burkardt [1983], is derived from curvature estimates and empirical
convergence data. The goal in estimating the optimal step size is to keep
the error in the prediction |Z® — Z|| relatively constant, so that the
number of iterations required by the corrector will be stable (Z©) =

lim,_ Z™). As with the normal flow algorithm, additional refinements on

the optimal step size are made in order to prevent chattering and unrea-
sonable values.

The final phase of the algorithm, computation of the solution at A = 1, is
a combination of the chord method, the secant method, and quasi-Newton
corrector iterations (10). The details are very similar to, but not identical
to, those for the normal flow algorithm end game. All four phases of the
quasi-Newton augmented Jacobian matrix algorithm in HOMPACK90 are
identical to those of the augmented Jacobian matrix algorithm in HOM-
PACK, for which pseudocode is given by Watson et al. [1987]. The only
differences in the new version are a few minor improvements in conver-
gence criteria, more elegant argument lists, and much improved code
readability, owing to Fortran 90 features such as array sections and
intrinsics, named block DO and CASE constructs, optional arguments,
interface blocks, automatic and assumed shape arrays, and modules.

5. ORDINARY DIFFERENTIAL EQUATION-BASED ALGORITHM (SPARSE
JACOBIAN MATRIX)

The sparse matrix codes in HOMPACK90 are a major upgrade to those in
HOMPACK. HOMPACK was purposely designed so that the linear algebra
subroutines could be easily replaced with others of the users’ choosing, and
that in fact has been done (for the sparse codes) more often than not with
sparse direct factorization methods [Melville et al. 1993a; 1993b]. The goals
of the present sparse matrix work are (1) to provide sparse iterative linear

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 525

algebra algorithms that are good enough and general enough to suffice for
most users and (2) simultaneously maintain a clean interface to the sparse
linear algebra subroutines so that they can be easily replaced with sparse
direct factorization or sparse iterative algorithms. The only sparse matrix
data structure supported by HOMPACK was the packed skyline format,
and the iterative linear system solver was Craig’s method [Craig 1954] for
nonsymmetric matrices, using Gill-Murray preconditioning [Gill and Mur-
ray 1974]. The target application for that code was structural mechanics,
where the equilibrium equations have the form

px, A) = F(x) — Av = 0,

and the tangent stiffness matrix D,p(x, A) = DF(x), being the Hessian of
a potential energy function, is symmetric. But homotopy methods involve
Dp(x, A), and ultimately nonsymmetric and symmetric indefinite matrices,
so classical iterative methods designed for symmetric, positive definite
matrices are not applicable.

However, there is a wide class of application areas (besides structural
mechanics) for which D,p(x, A) is symmetric, and a packed skyline storage
format for D.p is appropriate. Therefore the packed skyline format for
symmetric Jacobian matrices is retained as an option in HOMPACK90.
Another option in HOMPACK90 is a very general sparse row storage
format, intended for arbitrary sparsity patterns. Both of these sparse
matrix storage formats are discussed in detail below.

Besides Gill-Murray preconditioning (for symmetric matrices stored in
packed skyline format), HOMPACK90 offers an incomplete LU factoriza-
tion (technically known as ILU(0)) as a preconditioner for the sparse row
storage format. Both of these preconditioners are described below. Precon-
ditioning strategies are an active research topic, and certainly precondi-
tioners other than the two in HOMPACK90 may be better for some
problems, but these two should suffice for most applications.

5.1 Packed Skyline Storage Format

For sparse problems it is convenient to write the homotopy map as
Pa(x, A)

with the order of the arguments reversed (this is an internal matter to
HOMPACK90 and causes no confusion at the user interface, since the user

only specifies DF(x) in the fixed point and zero finding cases). The
assumption here is that the matrix D p,(x, A)is symmetric and sparse with
a “skyline” structure, such as

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

526 . L. T. Watson et al.

o o
o o o 9, O
o o, o 9, o, LEH
o & o o L&l
e o o o o, .,
o o [] [] .12 .18 .28
o 0, o, 0 o,
o 0, o, oy

The packed skyline format consists of a real array and an integer array.
The upper triangle is stored in a one-dimensional real array indexed as
shown above. The auxiliary integer array (1, 2, 4, 6, 8, 12, 17, 19, 21, 24, 32)
of diagonal indices is also required. By convention the auxiliary integer
array has length p + 1 with the (p + 1)st element containing the length
of the packed real array plus one. DAp,(x, A) is provided as a separate
column vector. Internally HOMPACK90 may augment D, p, with a row and
column, also stored in skyline format (depending on the problem), but these
details are transparent to the user.

In most applications where D,p, is symmetric, it is also a low rank
modification of a positive definite matrix. These properties, exactly as by
Watson et al. [1987], are exploited by matrix splitting and using a Gill-
Murray factorization [Gill and Murray 1974] as a preconditioning matrix.
Recall that for the ODE-based algorithm, all that is required is the kernel

of the matrix Dp,(x, A). Let (X, A) be a point on the zero curve vy, and y be
the unit tangent vector to y at (X, A) in the direction of increasing arc
length s. Let 1y,| = max ly;|. Then the matrix

Ao [Dpa(atc, by] (11)
€

where e;, is a vector with 1 in the kth component and zeros elsewhere is
invertible at (x, A) and in a neighborhood of (x, A) by continuity. Thus the
kernel of Dp, can be found by solving the linear system of equations

Ay = :)_/kep+1 = b. (12)

Let @ be any nonsingular matrix. The solution to the system Ay = b can
be calculated by solving the system

By = (@ 'A)y =Q'b =g. (13)

The use of such a matrix is known as (left) preconditioning. Since the goal
of using preconditioning is to decrease the computational effort needed to

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 527

solve the original system, @ should be some approximation to A. Then
® 'A would be close to the identity matrix, and the iterative method
described later would converge more rapidly when applied to (13) than
when applied to (12). In practice B and g are never explicitly formed. Right
preconditioning has the form

Bz = (AQ)z =A@ '2) = Ay = b, (14)

where the final step is to compute y = @ 2. HOMPACK90 uses right
preconditioning because that is what the GMRES code [Saad 1996; Walker
1988] on which the HOMPACK90 code is based uses; HOMPACK used left
preconditioning in conjunction with Craig’s conjugate gradient method to
solve (12) [Watson et al. 1987].

The coefficient matrix A in the linear system of equations (12), whose
solution y yields the kernel of Dp,(%, A), has a very special structure which
can be exploited if (12) is attacked indirectly as follows. Note that the
leading p X p submatrix of A is D,p,, which is symmetric and sparse, but
possibly indefinite. Write

A=M+1L (15)
where
| DupuE, M)
e PN g
and

D,p,(X, A) — ¢)

L = ue,., u=< 0

The choice of e} as the last row of A to make A invertible is somewhat
arbitrary, and in fact any vector (c’, d) outside a set of measure zero (a
hyperplane) could have been chosen. Other choices for the last row of A
have been thoroughly studied [Irani et al. 1991]. Thus for almost all vectors
¢ the first p columns of M are independent, and similarly almost all (p +
1)-vectors are independent of the first p columns of M. Therefore for almost
all vectors (¢, d) both A and M are invertible. Assume that (c¢’,d) is so
chosen.

Using the Sherman-Morrison formula (L is rank one), the solution y to
the original system Ay = b can be obtained from

—1,,
M ue, 4

I- 1\t
M 'u)e,,, +1

y = M™'b, (16)

which requires the solution of two linear systems with the sparse, symmet-
ric, invertible matrix M. It is the systems Mz = u and Mz = b which are

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

528 . L. T. Watson et al.

solved by a new preconditioned adaptive GMRES(%) algorithm, described in
a later section.

The only remaining detail is the choice of the preconditioning matrix Q.
@ is taken as the modified Cholesky decomposition of M, as described by
Gill and Murray [1974]. If M is positive definite and well conditioned, @
= M. Otherwise, @ is a well-conditioned positive definite approximation to
M. The use of a positive definite @ is reasonable if D p,(x, A) is positive
definite or differs from a positive definite matrix by a low rank perturba-
tion. The Gill-Murray factorization algorithm can exploit the symmetry and
sparse skyline structure of M, which is the point of this entire scheme.

5.2 Sparse Row Storage Format

The sparse row storage format is intended for arbitrary sparsity patterns,
and stores only the structural nonzeros of DF(x) or Dp, (i.e., elements that
happen to be zero by accident should be treated as nonzero). The data
structure for A in (11) consists of three arrays: a real one-dimensional
array q holding only the structural nonzero elements of A stored by row in
row order (the elements within a row need not be in column order), an
integer array r with r; giving the location within g of the beginning of the
elements for the ith row, and an integer array ¢ with c; giving the column
index of the jth element of q. By convention, the diagonal elements of A are
always structurally nonzero (for invertible A there always exists a permu-
tation matrix P such that PA has no zeros on the diagonal), and r,,, is the
length of g plus one. For example, the data structure for

40020
71000
A=[00 306
200 10
(0100 5|

is (here p = 4)
q=4, 2,7, 1,3, 0,6, 1, 2, 1, 5),
r=(1, 3, 5, 8, 10, 12),
c=(1, 4, 1, 2, 3, 4, 5, 4, 1, 2, 5).

The zero in location (3,4) is stored to illustrate a structural nonzeo, ¢ and ¢
have the same dimension, and r,., = dimgqg + 1 = 12.

Since D,p,(x, A) is unstructured, there is no advantage to splitting as in
(15), so that is not done. Also differing from the previous section, the last
row (¢!, d) of A in (11) is not just e}, but uses d # 0 as outlined by Irani et

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 529

al. [1991]. The kernel of Dp, is computed by solving the right precondi-
tioned system (14), where

D,p,(x, A) D,p,(x, \)

4= c! d ’

(17)

(¢, d) is chosen to guarantee that A is invertible [Irani et al. 1991], in
(14) is an ILU factorization of A, and the iterative linear system solver is a
new adaptive GMRES(%) algorithm described below.

Since ILU preconditioning was not used in HOMPACK, a precise descrip-
tion is given here. Let N = p + 1 and Z be a set of indices contained in
{i,j) 11 =1i,j =N, i # j}, typically where A is known to be zero. The
incomplete LU factorization is given by @ = LU, where L and U are lower
triangular and unit upper triangular matrices, respectively, that satisfy

Lij =U;=0, (i,j) €Z,
Qij = Aij’ (ly.]) E Z; l ;é.],
Q;=A;, whenever possible.

The incomplete LU factorization algorithm is:

for i = 1 step 1 until N do
for j = 1 step 1 until N do
if ((i, j) ¢ Z) then
begin

Sij:A

min{i, j}—1

2 LitUtj;

t=1

if (L 2]) then Ll] = Sij else Ul] = S
end

ij

ij / Ly;
It can happen that L;; is zero in this algorithm. In this case L;; is set to a
small positive number, so that @;; # A;;.

5.3 Adaptive GMRES(k) Algorithm

Among all the Krylov subspace methods for solving a linear system Ax =
b with a nonsymmetric invertible coefficient matrix A, the stabilized
bi-conjugate gradient algorithm (BiCGSTAB) [van der Vorst 1992], the
generalized minimal residual algorithm (GMRES) [Saad and Schultz 1986],
and the quasi-minimal residual algorithm (QMR) [Freund and Nachtigal
1991] are considered the most robust [McQuain et al. 1994]. Similar to the
classical conjugate gradient method, GMRES produces approximate solu-

tions x, which are characterized by a minimization property over the
Krylov subspaces span {ry, Ar,, A%rg, ..., A¥ Yr} wherer, = b —Ax,
and % is the iteration number. However, unlike the conjugate gradient
algorithm, the work and memory required by GMRES grow proportionately

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

530 . L. T. Watson et al.

to the iteration number. In practice, the restarted version GMRES(%) is
used, where the algorithm is restarted every %k iterations until the residual
norm is small enough. The restarted version may stagnate and never reach
the solution.

QMR reduces the computational effort by using a short-term recursion
for building the Lanczos basis. An implementation of QMR based on the
lookahead Lanczos process avoids the breakdowns associated with Lanczos-
type algorithms [Freund and Nachtigal 1990]. However, a QMR iterate
does not minimize the residual over the current Krylov subspace, which
results in more iterations than unrestarted GMRES and perhaps GMRES(
k) as well (that may or may not take more time than GMRES(%)). The QMR
algorithm may also behave erratically.

The essence of the adaptive GMRES strategy proposed here is to adapt
the parameter £ to the problem, similar in spirit to how a variable order
ODE algorithm tunes the order k2. With Fortran 90, which provides point-
ers and dynamic memory management, dealing with the variable storage
requirements implied by varying %k is not too difficult. 2 can be both
increased and decreased—an increase-only strategy is described below.

Though GMRES(%) cannot break down, it can stagnate. A test of stagna-
tion developed by Sosonkina et al. [1997] detects an insufficient residual
norm reduction in the restart number (k) of steps. Precisely, GMRES(%) is
declared to have stagnated and the iteration is aborted if at the rate of
progress over the last restart cycle of steps, the residual norm tolerance
cannot be met in some large multiple (bgv) of the remaining number of
steps allowed (itmax is a bound on the number of steps permitted). Slow
progress (near-stagnation) of GMRES(%k), which signals an increase in the
restart value k£, may be detected with a similar test. The near-stagnation
test uses a different, smaller multiple (smv) of the remaining allowed
number of steps. If near-stagnation occurs, the restart value % is incre-
mented by some value m, and the same restart cycle continues. Restarting
would mean repeating the nonproductive iterations that previously re-
sulted in stagnation, at least in the case of complete stagnation (no residual
reduction at all). Such incrementing is used whenever needed if the restart
value %k is less than some maximum value kmax. When the maximum value
for k£ is reached, adaptive GMRES(k) proceeds as GMRES(kmax). The
values of the parameters smv, bgv, and m are established experimentally
and can remain unchanged for most problems.

Let u be the machine unit roundoff, e; be the jth standard basis vector,
and all norms the 2-norm. The rounding error of a sparse matrix-vector
multiplication depends on only the nonzero entries in each row of the
sparse matrix, so the error tolerance xtol is proportional to the average
number of nonzeros per row avnz = (number of nonzeros in A) / p. Since
GMRES convergence is normally measured by reduction in the initial
residual norm, the convergence tolerance is tol = max{|r|, ||b|}xtol.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACKS90 . 531

Pseudocode for an adaptive version of GMRES(k) with orthogonalization
via Householder reflections (see Walker [1988]), called AGMRES(k) by
Sosonkina et al. [1997], follows.

choose x, itmax, kmax, m;
r:=b — Ax;itno := 0; cnmax := 1/ (50u);
xtol := max{100.0,1.01avnz}u; tol := max{||r|, |b|}xtol;
while |r| > tol do
begin

rotd .= p;

determine the Householder reflection P,

such that Pyr = =||rlley;

ki = 1;ky = k;
L1: forj := k; step 1 until 2, do
begin

itno := itno + 1;
v:= P . .PAP; - -Ppe;;
determine P;,; such that P;.;v has zero components
after the (j + 1)st;
update |r| as described by Saad [1996];
compute incremental condition number estimate ICN;
if ICN > cnmax then abort;
if |7| = tol then goto L2
end

test := ky X log [tol / |r||]1/ log [|Ir]| / ((1.0 + 10w)|r°"|)];
if kg = kmax — m and test = smv X (itmax — itno) then
ki:=ky+ 1; kg :=Fky + m;

goto L1
end if
L2:e;:= (1,0, -- -, 0); k := ky;
solve min|||rle; — H,y|| for y; where Hj
? is described by Saad [1996];

(1)

x:=x+ Py --Pg;r:=0b — Ax;
if |r| = tol then exit;
if [|r“| < || then
if |7|| < tol*? then
exit
else
abort
end if
end if

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

532 . L. T. Watson et al.

test := k X log[tol / ||r||]]1/ log[||r|| / (1.0 + 10w)|r°“||)];
if test = bgv X (itmax — itno) then
abort
end if
end

A possible symptom of AGMRES(k) going astray is an increase in the
residual norm between restarts (the residual norm is computed by direct
evaluation at each restart). If the residual norm on the previous restart is
actually smaller than the current residual norm, then AGMRES(%) termi-
nates. The solution is considered acceptable if ||r| < tol??3, although this
loss of accuracy in the tangent vector or corrector step may cause HOM-
PACK90 to fail. Usually HOMPACK90 can deal gracefully with a loss of
accuracy in the linear system solutions. If ||| = t0l?3, AGMRES(k) is
deemed to have failed. In this latter case, the continuation of GMRES(%)
would typically result in reaching a limit on the number of iterations
allowed and a possible repetition of [[r°/d| < |r| in later restarts.
AGMRES(k) may exceed an iteration limit when it is affected by roundoff
errors in the case of a (nearly) singular GMRES least-squares problem. As
in the work of Brown and Walker [1997], the condition number of the
GMRES least-squares problem is monitored by an incremental condition
estimate ICN [Bischof and Tang 1991], and AGMRES(%k) aborts when the
estimated condition number is greater than 1/(50u).

The use of Householder reflections rather than the more standard
modified Gram-Schmidt process is a subtle consequence of the well-estab-
lished need for high accuracy in the context of homotopy zero curve
tracking. A detailed discussion of this issue and results of numerical
experiments are in the work of Sosonkina et al. [1997], where the algorithm
AGMRES(%k) is also tested on realistic large-scale problems in analog
circuit simulation (using the sparse row storage format and ILU precondi-
tioning) and structural mechanics (using the packed skyline storage format
and Gill-Murray preconditioning).

5.4 Sparse ODE-Based Curve Tracking

For sparse Jacobian matrices, the logic of tracking the zero curve vy is
exactly the same as that for the dense Jacobian matrix case. The only
difference is in the linear algebra for the kernel calculation and the
concomitant data structures, which are substantially more complicated for
the sparse Jacobian matrix case. One significant innovation in HOM-
PACK90 is that storage space for temporary work arrays and for the sparse
Jacobian matrix data structure itself is dynamically allocated. The sparse
Jacobian matrix is made available globally via the MODULE HOMOTOPY
rather than through subroutine call lists, which is a major change from the
organization in HOMPACK. The low level details of this memory manage-
ment are best left to the code, where they are thoroughly documented.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 533

6. NORMAL FLOW ALGORITHM (SPARSE JACOBIAN MATRIX)

The logic of the predictor, corrector, step size estimation, and end game
phases of this algorithm is identical to that of the normal flow algorithm for
dense Jacobian matrices. Similar to the ordinary differential equation
based algorithm, the difference between the dense and sparse Jacobian
matrix cases is the low level numerical linear algebra. The main linear
algebra problem is the solution of (9), which also involves the calculation of
the kernel of Dp,(x, A). Equation (9) is solved using the same sparse
matrix data structures, matrix splitting (if appropriate), preconditioning
matrices, and adaptive GMRES(%) iterative algorithm used for the sparse
ordinary differential equation based algorithm (Eqs. (11)-(17)). For effi-
ciency, the kernel and Newton step AZ are calculated together by solving

Dxpa(x7)\) D)Lpa(xa /\) _ 0 _pa(x’ A)
ot d] [vw] = [5, 0] (18)

at points (x, A) near (¥, A) on 7, using the unit tangent vector y to y at
(X, A) in the direction of increasing arc length s. The Newton step AZ is
recovered from v and w in the usual way [Watson et al. 1987].

7. AUGMENTED (SPARSE) JACOBIAN MATRIX ALGORITHM

The augmented Jacobian matrix algorithm for sparse Jacobian matrices
differs from that for dense Jacobian matrices in three respects: (1) like the
sparse ODE based and normal flow algorithms, the low level numerical
linear algebra is changed to take advantage of the sparsity and structure of
the Jacobian matrices; (2) quasi-Newton iterations are abandoned in favor
of pure Newton iterations; (3) Rheinboldt’s step size control [Rheinboldt
and Burkardt 1983] is implemented more faithfully because of the use of
Newton iterations. Except for these three changes, the logic for tracking
the zero curve vy is exactly the same as that in the algorithm for dense
Jacobian matrices.

The kernel of Dp, at the point P'® needed for the unit tangent vector 7"?
to y at P'?, which in turn is required for the prediction (7), is computed
from

0
Dp,(P®) .

[e z = 0 (19)
1

Then T® = z/||z||; note that T'® automatically points in the direction of
increasing arc length s because Tz = 1 > 0. Instead of the quasi-
Newton approximation

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

534 . L. T. Watson et al.
A®
T(2)t
used in (10), the corrector steps AZ® are obtained from

(%) — (k)
[Dp“(z)]Az<k>=< p‘é(Z)). (20)

Note that all the iterates Z*) lie in the hyperplane through the initial
prediction Z© and perpendicular to 7'?—this is essentially the well-known
Riks-Wempner method used in mechanics.

The sparse linear algebra for the three curve tracking algorithms—ODE
based, normal flow, augmented Jacobian matrix—is slightly different. The
ODE based algorithm only needs the kernel of Dp,(x, A), and thus the last
row (¢'d) in (11) or (17) can be (almost) anything. The normal flow
algorithm needs both kernels and Newton corrections, but again this last
row (c¢'d) in (18) can be (almost) anything. The augmented Jacobian
matrix algorithm also needs both kernels and Newton corrections, but the
last row in (19) and (20) is (by definition) a tangent vector. HOMPACK had
three separate subroutines: PCGDS, PCGNS, and PCGQS—one for each
curve tracking method and corresponding choice of (¢’ d). HOMPACK90 is
organized rather differently—essentially the same sparse linear system is
solved in all three cases, with the variability coming from the storage
format and preconditioner used. For example, (20) is actually solved by
solving (18), and then recovering the desired Newton step AZ via

w - T®

AZ:w—mv.

(21)

This not only results in fewer subroutines in HOMPACK90, but is also
more efficient for the iterative linear system solver since the row (¢’ d)
actually used has at most two nonzeros, compared to the generally full row
T2,

The rationale for use of Newton iterations rather than quasi-Newton
iterations is similar to that for HOMPACK; namely, there is still no good
(comparable to Broyden or BFGS) sparse quasi-Newton update formula.
The comments by Watson et al. [1987] on the efficacy of deferred updating
and other possibilities still apply. The effect of using Newton’s method in
the algorithm is to replace every quasi-Newton update with the calculation
of the exact augmented Jacobian matrix.

The final change for the sparse matrix algorithm is an enhancement to
the step size control, allowed by the use of Newton iterations. The enhance-
ment involves implementing a more sophisticated control over the ideal
starting error, described in detail by Watson et al. [1987]. Except for the
sparse numerical linear algebra, all the curve tracking logic of the aug-

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACKS90 . 535

mented sparse Jacobian matrix algorithm in HOMPACK90 is identical to
that of the corresponding algorithm in HOMPACK. A final observation is
that this algorithm is more robust than the quasi-Newton version for dense
matrices, because occasionally large steps produce very bad quasi-Newton

approximations A%® to Dp,(Z®), leading to erratic behavior.

8. POLYNOMIAL SYSTEMS

This section describes the POLSYS1H driver for finding all complex solu-
tions to polynomial systems with real coefficients. A system of n polynomial
equations in n unknowns,

F(x) = Xlp;l1xf*1=0,i=1, ..., n, (22)

j=1 k=1
may have many solutions. Precisely, let

di = max dijk
1=j=n;
1<k=n

be the degree of the ith polynomial function F;(x), and define the total
degree of the system F(x) as

d=d; - -d,

Assume that (22) has finitely many solutions (this is true generically, i.e.,
for almost all coefficients p;;). Then (22) has exactly d solutions, counting
multiplicities, in complex projective space P". d is called the I-homoge-
neous Bezout number of the system F(x). Watson et al. [1987] contains a
concise description of complex projective space P”, how (22) is interpreted
over P", and references to the algebraic geometry literature.

It is possible to define a homotopy map so that all geometrically isolated
solutions of (22) have at least one associated homotopy path. Generally,
(22) will have solutions at infinity, which forces some of the homotopy
paths to diverge to infinity as A approaches 1. However, (22) can be
transformed into a new system (referred to as the projective transformation
of F(x) = 0 by Watson et al. [1987]) which, under reasonable hypotheses,
can be proven to have no solutions at infinity and thus bounded homotopy
paths. Because real problems are often poorly scaled, POLSYS1H includes
a general scaling algorithm (subroutine SCLGNP) that scales both the
coefficients and the variables. POLSYS1H uses an input “tableau” of
coefficients and related parameters to define the polynomial system. This
tableau is used to generate function and partial derivative values (subrou-
tine FFUNP). The user need not code any subroutine or Fortran 90 module
to be called by POLSYS1H.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

536 . L. T. Watson et al.

Although the POLSYS1H homotopy map is defined in complex or complex
projective space, the code POLSYS1H does not use complex computer
arithmetic. Since the homotopy map is complex analytic, the homotopy
parameter A is monotonically increasing as a function of arc length [Garcia
and Zangwill 1979]. The existence of an infinite number of solutions or an
infinite number of solutions at infinity does not destabilize the method.
Some paths will converge to the higher dimensional solution components,
and these paths will behave the way paths converging to any singular
solution behave. Practical applications usually seek a subset of the real
solutions, rather than all complex projective solutions. However, the sort of
generic homotopy algorithm considered here must find all solutions (with
respect to the closed algebraic space over which F(x) is being considered)
and cannot be limited without, in essence, changing it into a heuristic. The
theory of polynomial systems, algebraic geometry, is a deep and rich
subject, far beyond the scope of this discussion.

The parameters n, n;, p;;, d,;; defined in (22) constitute the coefficient
tableau. The subroutine SCLGNP uses this tableau to generate scale
factors for the coefficients p;; and the variables x,, and the subroutine
FFUNP uses it to compute system and Jacobian matrix values for
POLSYS1H. This has the advantage of being very general, but the disad-
vantage of usually being less efficient than a hand-crafted FFUNP. If CPU
time is an issue, the user may modify FFUNP to reduce the amount of
repeated computation inherent in its generic form. The projective transfor-
mation functions essentially as a scaling transformation, whose effect is to
shorten arc lengths and bring solutions closer to the unit sphere. The
SCLGNP scaling is different, in that it directly addresses extreme values in
the system coefficients. The two scaling schemes work well together. The
scaling and projective transformation algorithms in POLSYS1H are identi-
cal to those of POLSYS in HOMPACK, which are described in detail by
Watson et al. [1987]. Although the mathematical algorithms for
POLSYS1H are the same as for POLSYS, the code POLSYS1H is signifi-
cantly different from the code POLSYS in HOMPACK, mainly because
POLSYS1H takes full advantage of Fortran 90 features such as automatic
arrays, array sections, and array intrinsics.

POLSYS1H is constructed so that the user can evoke the projective
transformation or not and evoke scaling or not. If either of these options is
selected, it is transparent to the user; the solutions are returned untrans-
formed and unscaled. The input to POLSYS1H is the coefficient tableau
and a few parameters for the path tracking algorithm (normal flow) used by
POLSYS1H. POLSYS1H has a parameter NUMRR (number of reruns) so
that 1000*NUMRR steps will be taken before a path is abandoned.
Experience on industrial problems argues for the use of both the projective
transformation and scaling on most problems.

The 1-homogeneous code POLSYS1H is perfectly adequate for small
problems, being routinely used for d < 10%. In practice, only a handful of
these d solutions are real and/or physically meaningful, and as n increases,

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 537

computing the total degree number of solutions quickly becomes impracti-
cal (e.g., 20 cubic equations would have d = 32° ~ 3.5 - 107 solutions).
While the most powerful and practical approaches still compute many
nonphysical complex solutions, recent theoretical advances such as
m-homogeneity, BKK theory, and product decompositions have enormously
reduced the number of extraneous solutions that must be computed. These
theories are complicated, and their implementation in user-friendly, ro-
bust, portable software with such capabilities as automatic differentiation
and sophisticated error control is a major undertaking. The essence of all
these advanced theories is to “factor out” large numbers of nonphysical
solutions by exploiting the structure of F. For example, the
m-homogeneous approach [Morgan and Sommese 1987; 1989] partitions
the variables x; into m groups, where the ith group has k; variables, k;
+..-+k, =n. F(x) =0 is then converted into a system F'(x) = 0
that is homogeneous with respect to the variables in each group, and is
viewed as a polynomial system over P* X ... X P*. The number of
solutions over P** X ... X P*» called the m-homogeneous Bezout number,
may be orders of magnitude less than the total degree d (the 1-homoge-
neous Bezout number). Many applications have a natural m-homogeneous
structure. Many others do not.

Much more complicated structure is exploited by the combinatorial BKK
theory [Verschelde and Cools 1993; Verschelde et al. 1994] and general
product decompositions [Morgan et al. 1995]. The BKK combinatorial
computation flounders on larger problems, and the product decomposition
of Morgan et al. [1995] is more of an approach to exploiting structure than
an algorithm, and probably cannot be implemented in its full generality
into computer code. Nevertheless, there are schemes between
m-homogeneous and the general product decomposition that are probably
implementable, and subsume all m-homogeneous formulations. A polyno-
mial system code implementing some restricted form of product decomposi-
tion is planned for a future release of HOMPACK90.

9. ORGANIZATIONAL DETAILS

Physically, the HOMPACK90 package consists of four modules (HOMO-
TOPY, HOMPACK90, HOMPACK90_GLOBAL, REAL_PRECISION) and a
large collection of external subroutines. An object-oriented description of
these components is given in later subsections. There are other useful and
logical ways to view the organization of the HOMPACK90 package; some of
these logical viewpoints are described next.

HOMPACK90 can be logically viewed as being organized in two different
ways: by algorithm/problem type and by subroutine level. There are three
levels of subroutines. The top level consists of drivers, one for each problem
type and algorithm type. Normally these drivers are called by the user, and
the user need know nothing beyond them. They allocate storage for the
lower level routines, and all the arrays are variable dimension. So there is

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

538 . L. T. Watson et al.

Table I. Taxonomy of Homotopy Subroutines

x = flx) F(x) =0 pla, A, x) =0
Dense Sparse Dense Sparse Dense Sparse Algorithm
FIXPDF FIXPDS FIXPDF FIXPDS FIXPDF FIXPDS ODE based
FIXPNF FIXPNS FIXPNF FIXPNS FIXPNF FIXPNS normal flow

FIXPQF FIXPQS FIXPQF FIXPQS FIXPQF FIXPQS augmented Jacobian matrix

no limit on problem size. The second subroutine level implements the major
components of the algorithms such as stepping along the homotopy zero
curve, computing tangents, and the end game for the solution at A = 1. A
sophisticated user might call these routines or their reverse call versions
(described below) directly to have complete control of the algorithm, or for
some other task such as tracking an arbitrary parametrized curve over an
arbitrary parameter range. The third subroutine level handles high level
numerical linear algebra such as QR factorization, and includes some
LAPACK and BLAS routines [Anderson et al. 1995]. Low level linear
algebra (BLAS) is mostly done directly with Fortran 90 syntax or array
intrinsics. All the high level linear algebra and sparse matrix data struc-
ture handling are concentrated in these third-level routines, so a user could
incorporate his or her own data structures by writing his or her own
versions of these third-level routines. Also, by utilizing Fortran 90 array
intrinsics and by concentrating the higher level linear algebra in subrou-
tines, HOMPACK90 can be easily adapted to a vector or parallel computer.

The organization of HOMPACK90 by algorithm/problem type is shown in
Table I, which lists the driver name for each algorithm and problem type.
The naming convention is

FIXPy N { g },
Q
where
—D =~ ordinary differential equation based algorithm,
—N =~ normal flow algorithm,
—@ ~ quasi-Newton augmented Jacobian matrix algorithm,
—F =~ dense Jacobian matrix, and

—S =~ sparse Jacobian matrix.

The natural grouping of the HOMPACK90 routines into the three subrou-
tine levels described above, and a list of the BLAS and LAPACK routines
used, is provided in the README file with the source code.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 539

The user-written subroutines, of which exactly two must be supplied
depending on the driver chosen, are F, FJAC, FJACS, RHO, RHOA,
RHOJAC, and RHOJS, whose interfaces are specified in the module HO-
MOTOPY. The module REAL_PRECISION specifies the real numeric
model with

SELECTED_REAL_KIND(13),

which will result in 64-bit real arithmetic on a Cray, DEC VAX, and IEEE
754 Standard compliant hardware.

9.1 Driver for Polynomial Systems

The special-purpose polynomial system solver POLSYS1H, for which the
underlying mathematical theory was described earlier, is essentially a high
level interface to the driver FIXPNF in the MODULE HOMPACK90.
POLSYS1H requires special versions of RHO and RHOJAC (subroutines
normally provided by the user). These special versions are included in the
template file distributed with HOMPACK90, so for a polynomial system the
user need only call POLSYS1H, and define the problem directly to
POLSYS1H by specifying the polynomial coefficients. POLSYS1H scales
and computes partial derivatives on its own. Thus the user interface to
POLSYS1H and HOMPACK90 is clean and simple. The only caveat is that
FFUNP, which builds the polynomial system F' and its Jacobian matrix DF
from the coefficient tableau, cannot recognize patterns of repeated expres-
sions in the polynomial system, and so may be less efficient than a
hand-crafted version. If great efficiency is required, the user can modify the
default FFUNP; the sections in the code which must be changed are clearly
marked. The subroutine level grouping is:

[POLSYS1H] [FIXPNF, ROOTNF, STEPNF, TANGNF]
[DGEQPF, DGEQRF, DORMQR, DIVP, FFUNP, GFUNP, HFUNP,
HFUN1P, INITP, MULP, OTPUTP, POWP, RHO, RHOJAC, ROOT,
SCLGNP, STRPTP]

9.2 Modules HOMOTOPY, HOMPACK90, HOMPACK90_GLOBAL, and
REAL_PRECISION

The user-written subroutines—two of F, FJAC, FJACS, RHO, RHOA,
RHOJAC, RHOJS—are external subroutines, whose interfaces are pro-
vided to HOMPACK90 via the Fortran 90 module HOMOTOPY. Since these
interfaces are fixed, none of HOMPACK90 needs to be recompiled when the
user subroutines F, FJAC, etc., or modules used therein change. The
user-written subroutines can use modules to pass global information be-
tween the main program calling HOMPACK90 and these user-written
subroutines called by HOMPACK90, without using COMMON or requiring
extra work arrays PAR, IPAR in the argument lists of HOMPACK90
subroutines just to filter information down to F, FJAC, etc. (All the
HOMPACK drivers provided arrays PAR and IPAR of arbitrary size which

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

540 . L. T. Watson et al.

were passed all the way down to F, FJAC, etc. The old polynomial system
code POLSYS made extensive use of these arrays.) Modules provide an
effective mechanism for data hiding, and huge collections of analysis codes
can be hidden as PRIVATE internal subroutines within modules used by
the subroutines F, FJAC, etc. A template file for F, FJAC, FJACS, RHO,
RHOA, RHOJAC, and RHOJS is provided with the HOMPACK90 distribu-
tion, intended as a starting point for the user’s subroutines defining the
problem to be solved. Note that skeletons for all of the subroutines among
F, FJAC, FJACS, RHO, RHOA, RHOJAC, RHOJS not actually used must
be provided, since they are referenced by HOMPACK90. The three sample
main programs provided for verifying the installation also offer examples of
F, FJAC, etc.

The module HOMPACK90_GLOBAL, used by the module HOMOTOPY,
provides the repository for the sparse Jacobian matrix data structures,
which are allocated and deallocated by the high level HOMPACK90 sparse
routines. FJACS and RHOJS, as written by the user, simply assume that
the sparse matrix data structures exist and fill them with data when
called. Only two pieces of information about the data structures are given
to the drivers FIXPDS, FIXPNS, or FIXPQS: the type of sparse matrix
storage (integer MODE) and an upper bound LENQR on the number of
nonzeros in the Jacobian matrices. There are other equally elegant organi-
zational schemes, but this one requires no dynamic memory management
by the user at all.

The new numeric model and environmental inquiry functions of Fortran
90 are fully utilized in HOMPACK90. All real variables and constants in
HOMPACK90 have a KIND declared in the module REAL_PRECISION
(the default is 64-bit arithmetic), which must be modified for a different
numeric model. Double-precision BLAS and LAPACK routines are called by
HOMPACK?90.

The module HOMOTOPY uses the modules REAL_PRECISION and
HOMPACK90_GLOBAL, and contains interfaces for the external subrou-
tines F, FJAC, FJACS, RHO, RHOA, RHOJAC, and RHOJS. These user-
written subroutines must conform to their interfaces; note especially the
use of assumed shape arrays. The module HOMOTOPY is used throughout
HOMPACK90 to provide global information and define interfaces with the
user’s subroutines F, FJAC, etc. The reason for putting only the interfaces
to F, FJAC, etc., in HOMOTOPY rather than the routines themselves is
that, in the latter case, much of HOMPACK90 would have had to be
recompiled every time the problem definition code in the module HOMO-
TOPY changed.

All of the drivers and their documentation (as comment statements) are
encapsulated in a single MODULE HOMPACK90. The user’s calling pro-
gram would then simply contain a statement like

USE HOVPACK90, ONLY : FI XPNF

The hierarchy of the modules, in compilation order, is REAL_PRECISION,
HOMPACK90_GLOBAL, HOMOTOPY, HOMPACK90. Physically, HOM-

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 541

PACK90 consists of four modules and external subroutines; everything can
be compiled once, the external subroutines kept in an object library, and
the modules kept in a module library.

9.3 Usage Details

As mentioned above, the user only needs to deal with the MODULE
HOMPACKO90, typically by selecting one of the drivers from that module
with a USE statement. Descriptions of the argument lists, mathematical
assumptions concerning appropriate use, calling trees, and specifications
for the user-written subroutines are given as comments in the drivers in
the MODULE HOMPACK90. Three sample main programs—MAINF,
MAINS, MAINP—illustrate typical usage of the drivers for dense, sparse,
and polynomial systems, respectively. The special versions of RHO and
RHOJAC required by POLSYS1H should be extracted verbatim from either
the comments in MODULE HOMOTOPY or the template file. Installation
and testing information is contained in a README file.

9.4 Reverse Call Subroutines

Many scientific programmers prefer the reverse call paradigm, whereby a
subroutine returns to the calling program whenever the subroutine needs
certain information (e.g., a function value) or a certain operation performed
(e.g., a matrix-vector multiply). However, many users of mathematical
software are unfamiliar with reverse call; it is not the consensus preference
of computer scientists, and most of its advantages are obviated by the
features of Fortran 90. Thus HOMPACK90 retains the forward calling
(functional programming) style, but for unusual circumstances and some
users’ preference, two reverse call subroutines (STEPNX, ROOTNX) are
provided for “expert” users.

The ODE-based (D), normal flow (N), and quasi-Newton augmented
Jacobian matrix (Q) stepping routines provide complete algorithmic “cover-
age,” but the D and Q routines are rarely used in practice, because the N
routines are usually (but not always!) more efficient. Whether the Jacobian
matrix is sparse or dense is irrelevant to a reverse call stepping routine, if
the expert user is handling all matrix storage details and providing all
linear algebra operations. Hence only one expert reverse call stepping
routine, STEPNX is needed. STEPNX is a reverse call stepping subroutine,
designed to be used in lieu of any of the six standard (forward call) stepping
routines STEPDF, STEPNF, STEPQF, STEPDS, STEPNS, or STEPQS
(refer to the subroutine grouping in the README file and the comments in
the subroutines themselves). STEPNX returns to the caller for all linear
algebra all function and derivative values, and can deal gracefully with
situations such as the function being undefined at the requested step
length.

ROOTNX provides an expert reverse call end game routine. ROOTNX
has the same protocol as STEPNX, and generalizes the routines ROOTNF,

ROOTNS, ROOTQF by finding a point on the zero curve where g(A, x) =

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

542 . L. T. Watson et al.

Table II. Timing Comparisons between HOMPACK and HOMPACK90

Dimension n 50 100 150 200 250
Fortran 77 Time 0.350(41) 3.20(55) 10.1(54) 24.6(56) 56.4(66)
[0.00854] [.05818] [0.18704] [0.43929] [0.85455]
Fortran 90 Time 0.543(45) 3.563(53) 12.6(64) 27.4(61) 50.9(59)

[0.01207] [0.06660] [0.19687] [0.44918] [0.86271]

0, as opposed to just the point where A = 1. Thus ROOTNX can find
turning points, bifurcation points, and other “special” points along the zero
curve. The combination of STEPNX and ROOTNX provides considerable
flexibility for an expert user. The root finding algorithm in ROOTNX is the
end game described by Sosonkina et al. [1996], generalized to the situation
g(A, x) = 0.

10. TESTING

Watson et al. [1987] give results for HOMPACK applied to some difficult
concocted test problems, some mention of the range of problems in science
and engineering to which HOMPACK has been applied, and caveats about
the use of globally convergent homotopy methods and HOMPACK. All of
those comments apply equally well to HOMPACK90, and HOMPACK90
shows only minor differences from HOMPACK (for the computed arc length
and number of Jacobian matrix evaluations) on all those test problems; see
Table II for timing comparisons between HOMPACK and HOMPACK90.
The exponential test problem of Watson et al. [1987] deserves special
mention, because numerous papers have reported a lower number of
function evaluations along y than HOMPACK, but with an incorrect arc
length. Those “superior” results are obtained by missing a loop in v,
landing by accident on another loop in vy, and ultimately (again by accident)
tracking a piece of y to a solution. A recent survey of engineering applica-
tions is by Watson [1990], with some recent significant applications being
the work of Rakowska et al. [1991] and Melville et al. [1993a; 1993b].
POLSYS1H and the new end game were extensively tested by Sosonkina et
al. [1996], and results for the adaptive GMRES(k) algorithm on three
classes of problems were reported by Sosonkina et al. [1997]. The aforemen-
tioned references show the superior performance of HOMPACK90 com-
pared to HOMPACK, and the circuit problem described below could not
have been solved at all with the sparse routines in HOMPACK.

An interesting test of the adaptive GMRES(%k) algorithm is provided by
the problem of computing the operating points of a bandgap voltage
reference circuit with 28 transistors, fabricated with an in-house bipolar
process at AT&T Bell Laboratories. A sophisticated transistor model re-
sults in n = 198 unknowns. Using the variable gain homotopy map
described by Melville et al. [1993a] and searching for multiple solutions
with the program Sframe from Melville et al. [1993b] result in the
homotopy zero curve shown in Figure 2. Note the very sharp turns in the

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 543

m
~
1%}

[0,]

. wm

[] .
[SL A I ¥}

4.75

=
($]

4.25

state space component

0.56 0.565 0.57 0.575 0.58
A

Fig. 2. Section of homotopy zero curve for bandgap voltage reference circuit.

log residual norm

0 200 400 600 800 1000

number of iterations

Fig. 3. Residual norm behavior for adaptive GMRES algorithm.

zero curve 7, attributable to the behavior of transistors in the circuit.
Reordering the unknowns so that the Jacobian matrix (900 nonzeros) is as
nearly diagonally dominant as possible results in the ILU preconditioner in
HOMPACK90 being reasonably effective.

Figure 3 shows the performance of the adaptive GMRES(%) algorithm on
one of the Jacobian matrices (marked by the circle in Figure 2) along v,
where a circle indicates an increase in the subspace dimension (& = 8
initially). The adaptive strategy is invoked for the first time rather ear-
ly—to jump off the near-stagnation “plateau” after the 40th iteration. The
subspace dimension is increased several more times until AGMRES(%) has
enough vectors (32) to solve the system within the iteration limit. Note that
a smaller iteration limit (ITMAX, set in subroutine PCGDS) than the
HOMPACK90 default would have caused AGMRES(k) to increase the

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

544 . L. T. Watson et al.

subspace dimension quicker, thus reducing the number of iterations, but at
a considerably greater cost per iteration.

With current compiler technology, there can be a significant performance
penalty for choosing Fortran 90 over Fortran 77. The data in Table II are
for the Fortran 77 version of subroutine FIXPNF from HOMPACK and the
Fortran 90 version of subroutine FIXPNF from HOMPACK90, applied to
the zero finding problem for Brown’s function, using starting point a = 0,
curve tracking tolerances 0.5 - 1075 final accuracy tolerances 1.0 -+ 101,
and all HOMPACK(90) parameters at their default values. The compiler
used was DEC Digital Fortran 2.1 with option -fpe3, and the CPU times
(average of 10 runs) reported in Table II are in seconds on a DEC
AlphaStation 200 4/233. There are algorithmic differences between the two
versions of FIXPNF, but the better algorithms are in the Fortran 90
version. The numbers in parentheses after the CPU times are the numbers
of Jacobian matrix evaluations—these differ because the end games for
FIXPNF in HOMPACK and HOMPACK90 differ, with the new end game
being more robust but occasionally more expensive. The numbers in brack-
ets are seconds per Jacobian matrix evaluation, showing that a perfor-
mance penalty for using Fortran 90 exists, but decreases with increasing n.
FIXPNF does not use pointers. Allocatable arrays are allocated and deallo-
cated just once (by the driver FIXPNF), and automatic arrays are created
only once. So the time difference is probably due to the overhead associated
with assumed-shape arrays and with array section operations.

The performance differences shown in Table II are typical for nonlinear
equations whose solution cost is dominated by linear algebra and data
movement. Problems dominated by the function evaluation cost, such as
discretizations of boundary value problems with complicated coefficients,
take essentially the same amount of time with HOMPACK90 as with
HOMPACK. For sparse problems, the dynamic memory allocation required
by the new adaptive GMRES algorithm is not possible in Fortran 77. Even
for dense problems, despite an occasional performance penalty, there are
compelling reasons to use Fortran 90: significantly shorter and more
elegant argument lists, rigorous argument array size checking (a common
source of user errors), and interfaces to user-written subroutines that
prevent argument type mismatches.

ACKNOWLEDGMENT
The authors gratefully acknowledge suggestions from Nick Gould, Tim

Hopkins, John Reid, and a referee for significantly improving this article
and the Fortran 90 code in HOMPACK90.

REFERENCES AND BIBLIOGRAPHY

ALEXANDER, J. C., L1, T.-Y., AND YORKE, J. A. 1983. Piecewise smooth homotopies. In
Homotopy Methods and Global Convergence, B. C. Eaves, F. J. Gould, H.-O. Peitgen, and M.
dJ. Todd, Eds. Plenum Press, New York, 1-14.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACKS90 . 545

ALLGOWER, E. L. AND GEORG, K. 1990. Numerical Continuation Methods. Springer-Verlag,
Berlin, Germany.

ALLGOWER, E. L., CHIEN, C.-S., AND GEORG, K. 1989. Large sparse continuation prob-
lems. J. Comput. Appl. Math. 26, 1&2 (June), 3-21.

ALLGOWER, E. L., GEORG, K., AND MIRANDA, R. 1992. The method of resultants for computing
real solutions of polynomial systems. SIAM J. Numer. Anal. 29, 3 (June), 831-844.

ANDERSON, E., Bal, Z., BiscHOF, C. H., DEMMEL, J., DONGARRA, J. J., DU CROZ, J., GREENBAUM,
A., HAMMARLING, S., MCKENNEY, A., OSTROUCHOV, S., AND SORENSEN, D. C. 1995. LAPACK
User’s Guide. 2nd ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.

AuviL, L. S., RiBBENS, C. J., AND WATSON, L. T. 1992. Problem specific environments for
parallel computing. In Proceedings of the Scalable High Performance Computing Confer-
ence, R. Voigt, Ed. IEEE Computer Society Press, Los Alamitos, CA, 149-152.

BiLups, S. C. 1985. An augmented Jacobian matrix algorithm for tracking homotopy zero
curves. Master’s thesis, Dept. of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, VA.

BiscHor, C. H. AND TaNg, P. T. P. 1991. Robust incremental condition estimation. Tech.
Rep. CS-91-133. LAPACK Working Note 33, Computer Science Dept., University of Tennes-
see, Knoxville, TN.

BJORCK, A. 1967. Solving linear least squares problems by Gram-Schmidt orthognoaliza-
tion. BIT 7, 1-21.

BrowN, P. N. AND WALKER, H. F. 1997. GMRES on (nearly) singular systems. SIAM J.
Matrix Anal. Appl. 18, 37-51.

BRUNOVSKY, P. AND MERAVY, P. 1984. Solving systems of polynomial equations by bounded
and real homotopy. Numer. Math. 43, 397—-418.

BUSINGER, P. AND GoLuUB, G. H. 1965. Linear least squares solutions by Householder
tranformations. Numer. Math. 7, 269-276.

CHAN, T. F. AND SaaDp, Y. 1985. Iterative methods for solving bordered systems with
applications to continuation methods. SIAM J. Sci. Stat. Comput. 6, 438—451.

CHOW, S. N., MALLET-PARET, J., AND YORKE, J. A. 1978. Finding zeros of maps: Homotopy
methods that are constructive with probability one. Math. Comput. 32, 887—899.

CHOW, S. N., MALLET-PARET, J., AND YORKE, J. A. 1979. A homotopy method for locating all
zeros of a system of polynomials. In Functional Differential Equations and Approximation
of Fixed Points, H. O. Peitgen and H. O. Walther, Eds. Springer Lecture Notes in
Mathematics, vol. 730. Springer-Verlag, New York, 228-237.

CraIlG, E. J. 1954. Iteration procedures for simultaneous equations. Ph.D. thesis. Massa-
chussetts Institute of Technology, Cambridge, MA.

DENNIS, J. E. AND SCHNABEL, R. B. 1983. Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations. Prentice-Hall, Inc., Upper Saddle River, NdJ.

DEsa, C., Irani, K. M., RiBBENS, C. J., WATSON, L. T., AND WALKER, H. F. 1992. Precondi-
tioned iterative methods for homotopy curve tracking. SIAM J. Sci. Stat. Comput. 13, 1
(Jan.), 30—46.

DONGARRA, J. J., MOLER, C. B., BUNCH, J. R., AND STEWART, G. W. 1979. LINPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA.

FapEEv, D. K. AND FADEEVA, V. N. 1963. Computational Methods of Linear Algebra. Free-
man, London, UK.

FreunD, R. W. AND NACHTIGAL, N. M. 1990. An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices: Part II. Tech. Rep. 90.46. RIACS, NASA Ames
Research Center, Moffett Field, CA.

FrReunD, R. W. AND NAcHTIGAL, N. M. 1991. QMR: A quasi-minimal residual method for
non-Hermitian linear systems. Numer. Math. 60, 315-339.

GaARciIa, C. B. AND ZANGWILL, W. I. 1979. Finding all solutions to polynomial systems and
other sytems of equations. Math. Program. 16, 159-176.

GE, Y., CoLLiNs, E. G., Jr., AND WATSON, L. T. 1996a. A comparison of homotopies for
alternative formulations of the L2 optimal model order reduction problem. J. Comput.
Appl. Math. 69, 215-241.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

546 . L. T. Watson et al.

GE, Y., CoLLINS, E. G., Jr., WATSON, L. T., AND Davis, L. D. 1994. An input normal form
homotopy for the L? optimal model order reduction problem. IEEE Trans. Automat. Contr.
39, 1302-1305.

GE, Y., WarsoN, L. T., CoLLiNs, E. G., JR., AND BERNSTEIN, D. S. 1996b. Probability-one
homotopy algorithms for full and reduced order H>/H” controller synthesis. Optim. Contr.
Appl. Methods 17, 187-208.

GE, Y., WATsoN, L. T., CoLLINS, E. G., JR., AND BERNSTEIN, D. S. 1997. Globally convergent
homotopy algorithms for the combined H?/H” model reduction problem. <. Math. Syst. Est.
Contr. 7, 129-155.

GiLL, P. E. AND MURRAY, W. 1974. Newton-type methods for unconstrained and linearly
constrained optimization. Math. Program. 7, 311-350.

GoLuB, G. H. aND VAN LoaN, C. F. 1989. Matrix Computations. 2nd ed. Johns Hopkins
University Press, Baltimore, MD.

Happap, W. M. AND BERNSTEIN, D. S. 1989. Combined L,/H. model reduction. Int. J.
Contr. 49, 1523-1535.

HASELGROVE, C. B. 1961. A solution of nonlinear equations and of differential equations
with two-point boundary conditions. Comput. J. 4, 255-259.

HesTeENES, M. R. 1956. The conjugate gradient method for solving linear systems. In
Proceedings of the Symposium on Applied Mathematics. American Mathematical Society,
Boston, MA, 83-102.

HovrzEgr, S. M., PLAuT, R. H., SOMERS, A. E., JRr., AND WHITE, W. S. 1980. Stability of lattice
structures under combined loads. J. Eng. Mech. 106, 289-305.

Irani, K. M., KamaT, M. P., RIBBENS, C. J., WALKER, H. F., AND WATsoON, L. T. 1991. Experi-
ments with conjugate gradient algorithms for homotopy curve tracking. SIAM J. Optim. 1,
222-251.

Kaprania, R. K. AND YANG, T. Y. 1986. Formulation of an imperfect quadrilateral doubly
curved shell element for postbuckling analysis. AIAA J. 24, 310-311.

KuBICEK, M. 1976. Dependence of solutions of nonlinear systems on a parameter. ACM
Trans. Math. Softw. 2, 1 (Mar.), 98-107.

L1, T. Y., SAUER, T., AND YORKE, J. A. 1988. Numerically determining solutions of systems of
polynomial equations. Bull. AMS 18, 173-177.

MATTHIES, H. AND STRANG, G. 1979. The solution of nonlinear finite element equations. Int.
J. Numer. Method. Eng. 14, 1613-1626.

McQuaiN, W. D., MELVILLE, R. C., RiBBENS, C. J., AND WATSON, L. T. 1994. Preconditioned
iterative methods for sparse linear algebra problems arising in circuit simulation. Comput.
Math. Appl. 27, 25—-45.

MEINTJES, K. AND MORGAN, A. P. 1985. A methodology for solving chemical equilibrium
systems. Tech. Rep. GMR-4971. General Motors Research Laboratory, Warren, MI.

MEJia, R. 1986. CONKUB: A conversational path-follower for systems of nonlinear equa-
tions. J. Comput. Phys. 63, 1 (Mar.), 67—84.

MELVILLE, R. C., MOINIAN, S., FELDMANN, P., AND WATSON, L. T. 1993a. Sframe: An efficient
system for detailed DC simulation of bipolar analog integrated circuits using continuation
methods. Analog Integrated Circuits Signal Process. 3, 3 (May), 163—180.

MELVILLE, R. C., TRAJKOVIC, LJ., FANG, S.-C., AND WATSON, L. T. 1993b. Artificial parameter
homotopy methods for the DC operating point problem. IEEE Trans. CAD 12, 6 (June),
861-8717.

MEeNZEL, R. AND ScCHWETLICK, H. 1978. Zur Loésung parameterabhéngiger nichtlinearer
Gleichungen mit singulédren Jacobi-Matrizen. Numer. Math. 30, 65-79.

MorGaN, A. P. 1986a. A transformation to avoid solutions at infinity for polynomial
systems. Appl. Math. Comput. 18, 1, 77-86.

MOoORGAN, A. P. 1986b. A homotopy for solving polynomial systems. Appl. Math. Comput.
18, 1, 87-92.

MOoRGAN, A. P. 1987. Solving Polynomial Systems Using Continuation for Engineering and
Scientific Problems. Prentice-Hall, Inc., Upper Saddle River, NJ.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACKS90 . 547

MORGAN, A. P. AND SOMMESE, A. J. 1987. A homotopy for solving general polynomial
systems that respects m-homogeneous structures. Appl. Math. Comput. 24, 2 (Nov.),
101-113.

MoORGAN, A. P. AND SOMMESE, A. J. 1989. Coefficient parameter polynomial continuation.
Appl. Math. Comput. 29, 2 (Jan.), 123-160. Errata appear in vol. 51 (1992), p. 207.

MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C. W. 1991. Computing singular solutions to
nonlinear analytic systems. Numer. Math. 58, 669—684.

MORGAN, A. P., SOMMESE, A. J., AND WAMPLER, C. W. 1995. A product-decomposition bound
for Bezout numbers. SIAM J. Numer. Anal. 32, 4 (Aug.), 1308-1325.

MORGAN, A. P., SOMMESE, A. J., AND WATSON, L. T. 1989. Finding all isolated solutions to
polynomial systems using HOMPACK. ACM Trans. Math. Softw. 15, 2 (June), 93—-122.
POORE, A. B. AND AL-HassAN, Q. 1988. The expanded Lagrangian system for constrained

optimization problems. SIAM J. Contr. Optim. 26, 2 (Mar.), 417-427.

Rakowska, J., HAarTRA, R. T., AND WaTsoN, L. T. 1991. Tracing the efficient curve for
multi-objective control-structure optimization. Comput. Syst. Eng. 2, 461-472.

RuEINBOLDT, W. C. 1981. Numerical analysis of continuation methods for nonlinear struc-
tural problems. Comput. Struct. 13, 103-113.

RuHEINBOLDT, W. C. 1986. Numerical Analysis of Parametrized Nonlinear Equations. Uni-
versity of Arkansas Lecture Notes in the Mathematical Sciences. Wiley-Interscience, New
York, NY.

RHEINBOLDT, W. C. AND BURKARDT, J. V. 1983. ALGORITHM 596: A program for a locally
parameterized continuation process. ACM Trans. Math. Softw. 9, 2 (June), 236-241.

RICHTER, S. AND DECARLO, R. 1983. Continuation methods: Theory and applications. IEEE
Trans. Automat. Contr. 28, 660—665.

RICHTER, S. AND DECARLO, R. 1984. A homotopy method for eigenvalue assignment using
decentralized state feedback. IEEE Trans. Automat. Contr. 29, 148-155.

Riks, E. 1979. An incremental approach to the solution of snapping and buckling problems.
Int. J. Solids Struct. 15, 529-551.

SAaaD, Y. 1993. A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci.
Comput. 14, 2 (Mar.), 461-469.

SAAD, Y. 1996. Iterative Methods for Sparse Linear Systems. PWS Publishing Co., Boston,
MA.

SAAD, Y. AND ScHULTZ, M. H. 1986. GMRES: A generalized minimal residual algorithm for
solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 3 (July), 856—869.
SHAMPINE, L. F. AND GorDON, M. K. 1975. Computer Solution of Ordinary Differential

Equations: The Initial Value Problem. W. H. Freeman & Co., New York, NY.

SOSONKINA, M., WATSON, L. T., AND STEWART, D. E. 1996. Note on the end game in homotopy
zero curve tracking. ACM Trans. Math. Softw. 22, 3 (Sept.), 281-287.

SOSONKINA, M., WATSON, L. T., AND KAPANIA, R. K. 1997. A new adaptive GMRES algorithm
for achieving high accuracy. Tech. Rep., Dept. of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, VA. To appear in Num. Lin. Alg.

TRAJKOVIC, LJ., MELVILLE, R. C., AND FaNG, S.-C. 1990. Passivity and no-gain properties
establish global convergence of a homotopy method for DC operating points. In Proceedings
of the IEEE International Symposium on Circuits and Systems (New Orleans, La.,
May). IEEE Press, Piscataway, NJ, 914-917.

Tsar1, L.-W. AND MORGAN, A. P. 1985. Solving the kinematics of the most general six- and
five-degree-of-freedom manipulators by continuation methods. ASME J. Mech. Trans.
Automat. Des. 107, 48-5T7.

VAN DER VORST, H. A. 1992. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG
for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13, 2 (Mar.),
631-644.

VAN DER VORST, H. A. AND VUuiK, C. 1993. The superlinear convergence behaviour of
GMRES. J. Comput. Appl. Math. 48, 3 (Nov.), 327-341.

VAN DER VORST, H. A. AND VUIK, C. 1994. GMRESR: A family of nested GMRES methods.
Num. Lin. Alg. Appl. 1, 369-386.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

548 . L. T. Watson et al.

VAN DER WAERDEN, B. L. 1953a. Modern Algebra. Vol. 1. Frederick Ungar Publishing Co.,
New York, NY.

VAN DER WAERDEN, B. L. 1953b. Modern Algebra. Vol. 2. Frederick Ungar Publishing Co.,
New York, NY.

VASUDEVAN, G., WATSON, L. T., axp Lutrzg, F. H. 1991. Homotopy approach for solving
constrained optimization problems. IEEE Trans. Automat. Contr. 36, 494—498.

VERSCHELDE, J. AND CooLs, R. 1993. Symbolic homotopy construction. Appl. Alg. Eng.
Commun. Comput. 4, 169-183.

VERSCHELDE, J., VERLINDEN, P., AND CooLs, R. 1994. Homotopies exploiting Newton poly-
topes for solving sparse polynomial systems. SIAM J. Numer. Anal. 31, 3 (June), 915-930.

WALKER, H. F. 1988. Implementation of the GMRES method using Householder transfor-
mations. SIAM J. Sci. Stat. Comput. 9, 1 (Jan.), 152-163.

WALKER, H. F. AND WATsON, L. T. 1990. Least-change secant update methods for under-
determined systems. SIAM J. Numer. Anal. 27, 5 (Oct.), 1227-1262.

WAMPLER, C. W., MORGAN, A. P., AND SOMMESE, A. J. 1990. Numerical continuation methods
for solving polynomial systems arising in kinematics. ASME J. Mech. Des. 112, 59—68.
WAMPLER, C. W., MORGAN, A. P., AND SOMMESE, A. J. 1992. Complete solution of the
nine-point path synthesis problem for four-bar linkages. ASME J. Mech. Des. 114, 153—

159.

WaTsoN, L. T. 1979a. A globally convergent algorithm for computing fixed points of C?
maps. Appl. Math. Comput. 5, 297-311.

Warson, L. T. 1979b. Solving the nonlinear complementarity problem by a homotopy
method. SIAM J. Contr. Optim. 17, 36—46.

WarsoN, L. T. 1979c. An algorithm that is globally convergent with probability one for a
class of nonlinear two-point boundary value problems. SIAM J. Numer. Anal. 16, 394—-401.

WaTSON, L. T. 1979d. Fixed points of C%2 maps. J. Comput. Appl. Math. 5, 131-140.

Wwatson, L. T. 1980a. Solving finite difference approximations to nonlinear two-point
boundary value problems by a homotopy method. SIAM J. Sci. Stat. Comput. 1, 467—480.

Wwatson, L. T. 1980b. Computational experience with the Chow-Yorke algorithm. Math.
Program. 19, 92-101.

Watson, L. T. 1981. Engineering applications of the Chow-Yorke algorithm. Appl. Math.
Comput. 9, 111-133.

WarsoN, L. T 1986. Numerical linear algebra aspects of globally convergent homotopy
methods. SIAM Rev. 28, 4 (Dec.), 529-545.

Warson, L. T. 1989. Globally convergent homotopy methods: A tutorial. Appl. Math.
Comput. 31BK, 369-396.

Warson, L. T. 1990. Globally convergent homotopy algorithms for nonlinear systems of
equations. Nonlinear Dynamics 1, 143-191.

WaTtsoNn, L. T. AND FENNER, D. 1980. ALGORITHM 555: Chow-Yorke algorithm for fixed
points or zeroes of C2 maps. ACM Trans. Math. Softw. 6, 2 (June), 252—-259.

WarsoN, L. T. aNp Scorr, R. L. 1987a. Solving Galerkin approximation to nonlinear
two-point boundary value problems by a globally convergent homotopy method. SIAM J.
Sci. Stat. Comput. 8, 5 (Sept.), 768—-789.

Warson, L. T. anp Scorr, M. R. 1987b. Solving spline collocation approximations to
nonlinear two-point boundary value problems by a homotopy method. Appl. Math. Comput.
24, 4 (Dec.), 333—-357.

Wartson, L. T., BiLLups, S. C., AND MORGAN, A. P. 1987. ALGORITHM 652: HOMPACK: A
suite of codes for globally convergent homotopy algorithms. ACM Trans. Math. Softw. 13, 3
(Sept.), 281-310.

WaTsoN, L. T., BIXLER, J. P., AND POORE, A. B. 1989. Continuous homotopies for the linear
complementarity problem. SIAM J. Matrix Anal. Appl. 10, 259-2717.

Warson, L. T., HoLzEr, S. M., AND HANSEN, M. C. 1983. Tracking nonlinear equilibrium
paths by a homotopy method. Nonlinear Anal. 7, 1271-1282.

Wwatson, L. T., Kamat, M. P., AND REASER, M. H. 1985. A robust hybrid algorithm for
computing multiple equilibrium solutions. Eng. Comput. 2, 30-34.

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

Algorithm 777: HOMPACK90 . 549

WEMPNER, G. A. 1971. Discrete approximations related to nonlinear theories of solids. Int.
J. Solids Struct. 7, 1581-1599.

WRIGHT, A. H. 1985. Finding all solutions to a system of polynomial equations. Math.
Comput. 44, 1 (Jan.), 125-133.

Yang, T. Y., KAPANIA, R. K., AND SAIGAL, S. 1989. Accurate rigid-body modes representation
for a nonlinear curved thin-shell element. AIAA J. 27, 211-218.

7161¢, D. 1991. Homotopy methods for solving the optimal projection equations for the
reduced order model problem. M.S. thesis, Dept. of Computer Science, Virginia Polytechnic
Institute and State University, Blacksburg, VA.

71G1C, D., WATSON, L. T., AND BEATTIE, C. A. 1993. Contragradient transformations applied
to the optimal projection equations. Lin. Alg. Appl. 188/189, 665-676.

71GIC, D., WATSON, L. T., CoLLINS, E. G., JR., AND BERNSTEIN, D. S. 1992. Homotopy methods
for solving the optimal projection equations for the H, reduced order model problem. Int. dJ.
Contr. 56, 173-191.

7161¢, D., WatsoN, L. T., CoLLiNs, E. G., Jr., AND BERNSTEIN, D. S. 1993. Homotopy
approaches to the H, reduced order model problem. J. Math. Syst. Est. Contr. 3, 173—-205.

Received: June 1996; revised: September 1996, December 1996, and March 1997; accepted:
April 1997

ACM Transactions on Mathematical Software, Vol. 23, No. 4, December 1997.

